
AD-Aill 980 OHIO STATE UNI V RE$EARCH FOUNDATION coLUMaus F/6 13/13
T-MATRIX ANALYSIS OF ACOUSTIC WAVE SCATTERING FROM THIN ELASTIC-ETC(U)
OCT 81 V V VARADAN, V K VARADAN NOOOINSO0C-0573

UNCLASSIFIED NL,

I U~~ EEENDEEE



1 111121141 $112.
f1.8

1011=L25 1-4'~I 16*

MICROCOPY RESOLUTION TEST CHART

NA IfIN L AP tl I t 0 IAN AN t - A



RF Project 762148/712845
Final Report

the
ohio
state
university

research foundation
14 krmw road
Coku*us owo

43212

iT-MATRIX ANALYSIS OF ACOUSTIC
WAVE SCATTERING FROM THIN ELASTIC SHELLS

V. V. Varadan and V. K. Varadan
Department of Engineering Mechanics

For the Period
May 1, 1980 - April 30, 1982

DEPARTMENT OF THE NAVY 0
Office of Naval Research

Arlington, Virginia 22217

Conrat o.NOOO 4 -0-C- 5 7 3 Q -45
October, 1981

I
A epO"iot 8pbU i 2 052

Ditrwtof 
__ ___



I
I '

I FINAL REPORT

i RF Project 712845/762148

I

T-MATRIX ANALYSIS OF ACOUSTIC
WAVE SCATTERING FROM THIN ELASTIC SHELLS

V. V. Varadan and V. K. Varadan
Wave Propagation Group

Department of Engineering Mechanics
The Ohio State University

Columbus, Ohio 43210 X

October, 1981

II



I Introduction

In the last five years, much progress has been made in the study of

gacoustic wave scattering by elastic-obstacles immersed in water using the
T-matrix approach. Excellent agreement with experiments was demonstrated

for the finite elastic cylinder1'2 with spherical end caps. The T-matrix

approach was then extended to the problem of elastic shells immersed in

water. Numerical calculations of ithe, frequency dependence of acoustic

1 wave scattering by prolate and oblate sphciroidal elastic and viscoelastic

shells were presented in Ref. 3. However, since the problem was formulated

exactly in the shell region, several numerical difficulties arose as the

thickness of the shell was decreased and the frequency increased..It is

understood, that in problems of interest to the Navy, scattered field data

is required for long, thin bodies of revolution whose wall thickness is

very small compared to the wavelength of the incident wave but whose overall

dimensions are comparable and often larger than the wavelength of the incident

wave.

This project was begun to precisely address such problems, taking into

account and exploiting the thinness of the shell. We propose to use shell

theory equations rather than the full elasticity equations in region I (see

figure 1) in order to avoid some of the complications encountered in Ref. 3.

1 Shell theory reduces the parti cerential equations in three coordinates

to a higher order equation in two coordinates. All description of the

1displacement and stress fields is made with respect to a reference surface
in the shell. Now, it is no longer necessary to invoke integral repre-

., sentations to describe the elastic field in this region. One extracts

J from the shell equations an expression for the impedance matrix of the
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shell which is then interfaced with the T-matrix approach for acoustic

wave scattering problems..-

The null field equations

Consider a closed obstacle of piecewise smooth surface S with an out-

ward normal ; which is immersed in water. A plane harmonic acoustic wave

of frequency w is incident on the obstacle. The total field in the water

consists of the incident field 0o and the scattered field 0 . The integral

representation of these fields is well known 4,S and takes the form

-(r;rinside S cI *sc ~~,r; r outside S "16 ,'C,'),C' l
S S

r rt

r) V, dS(~

where g(',r') is the Green's function of the scalar Helmholtz equation

for an infinite medium and 0 is the velocity potential. The expressions

for 'g' are known in both 2-D and 3-D

9(r, r) = i-n H 0 ) (kj-'1) ; 2-D (2)

g =,) - exp i kjr-'rj / kJ'-'' ; 3-D (3)

In the T-matrix approach we expand the incident and scattered

fields in eigen functions of the wave equations as follows

*0 (') A n AReo (r) I(4)

Jand IN frcy
2

lyTT= i CS)
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where n are the circular cylindrical functions in 2-D and the spherical

functions in 3-D. The index 'n' is a super index that represents all

the required subscripts for the wavefunction. The qualifier 'Re' stands

for functions that are regular at the origin and 'Ou' represents functions

that are outgoing at infinity. Thus these expansions are consistent with

our knowledge of the regularity of the incident field in the region occupied

by the obstacle and the radiation conditions satisfied by the scattered

field at distances far from s. A detailed description of the wavefunctions

for 2-D and 3-D problems may be found in Ref. 4. It may be noted that

since only scalar waves are involved, we may use elliptical or spheroidal

functions as appropriate for the expansion of the fields . Thus *n repre-

sents any complete, orthogonal set of solutions of the scalar Helmholtz

equation.

The expansion of the Green's function is also known and takes the form

= i )zOu on(r>) Re n(r<) (6)
n

where r> and r< stand for the greater and lesser of and ;' respectively.

The factor w is used in 2-D and the factor k in 3-D

Substituting eqs. (4)-(6) in eq. (1) we arrive in the usual manner at

fn (7rRe~ '"' = ~fi V *d()
S

IReon

In order to solve for the known scattered field coefficients 'f '

I 3
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in terms of the known incident field coefficients '1n' we must specify
n

and n • 4 on the surface S of the elastic shell. Since 0 is the

velocity potential, for time harmonic waves, 0+ is related to the surface

pressure, P+ and R - V+ to the normal component of the particle velocity,

Sn v on the surface. Thus, since

p(r) =iw W (r) (8)

and

=V') r (9)

equation (7) may be rewritten as

= + )

S!{ou -v~ +)] dS (10)

where p is the mass density of the water. We now proceed to discuss the

use of shell theory to represent the pressure and normal velocity on the

surface of the shell keeping in mind that the boundary conditions at S

are

P Cr) - P (') '; rons

and

) " .oCn) ; . (12)

If 1



Impedance matrix for elastic shells

Consider a coordinate system on the surface S that is 2-D and tangent

to the surface at every point. Let ( ,n) represent these two coordinates.

Let ui be the components of the displacement field in ;, F and n directions

respectively, where ; is a coordinate normal to the shell surface. If the

thickness '2h' of the shell is small compared to its other dimensions, it

is appropriate to assume that u, v and w are functions of E and n only. Let

'n be a complete set of functions that are orthogonal on the surface S.

Then we may write

ui( , ) = c n ) ; i = 1,2,3 (13)
*'3 n

The set of coefficients ai can be considered the generalized coordinatesn

of the problem. This approach has been previously used by Junger to

analyze the scattering of acoustic wave circular cylindrical shells of

infinite length when waves are incident normal to the axis of the cylinder.

We may set up the Lagrangian for the shell as

L = T - V (14)

where T is the kinetic energy density and V the potential energy density.

due to the elastic strain energy of the shell. Hence

T ho I  2  A 2]dS (1s)

S

and

V f F~ul1u 2  u 3dS (16)

!1 S
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The function F that is quadratic in the displacements u. may be
1

constructed from shell theory.

In shell theory approximations, one considers various contributions

to the elastic strain energy that includes effects such as the membrane

effect, bending, rotary inertia, transverse shear etc. These effects must

be included as appropriate for the particular problem on hand with con-

sideration given to the frequency of the incident harmonic wave and the

exact shape of the shell. At the present time this part of the study is

still incomplete. However, this does not prevent us from proceeding further

with the formulation.

Lagrange's equations for the system takes the form

d ) 3V(17)

n n

d- (IT_) a 0 (18)

n n

and

(3 3 3 = 0 (19)n n

Where Qn is the generalized force due to the pressure exerted by the

fluid outside the shell. Since the fluid is assumed to be non-viscous,

Jthe force acts only in the normal direction i.e., along the coordinate C.

The generalized Force in the other two directions are zero.

An expression for Qn can be obtained by giving the shell a vertical dis-

placement 6u in the 4 direction. If P+ is the total pressure on the shell

surface, then

I6
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Qn =  + f n j+ n g n d s  (20)

S

i The total pressure on S is expanded as follows

P (-) = I ip(&,n) ; rOn (21)
m

Thus

Qn= f * J fmC&,l)*n( ifl)dS (22)
m S

If the n are an orthonormal set

%n O - (23)

We further note using eq. (13) that

d (a '~2 t~ dS= 2hp 2 i (24)
I\6) 2, j 2 n w an

n S

and

3 (j
v - A u.* dS A a3  (2S)an jn n ~

where the 3 x-3 matrix Aij may be set up for each modal index n from the
n

explicit expressions for the strain energy density of the shell. We

repeat that this part of the formulation is incomplete.

JSubstituting eqs. (24) and (25) in Lagrange's equations as given in
eqs. (17) - (19), we obtainI



T.- T -R

I!

' I - 2 " I- - (26)
5 n a n.

_2h o 2  + J = 0 (27)

Sn +

and

-2hp 2 3  + A3j a' 0 
(28)

-h s 2 n  n n

Equations (26) - (28) may be solved to yield the ratio 
/a which we

write as

On =(29)

n

from eqs. (13) and (21) we have

P+(r) = c tc'n(E' f) ; r on S30)

Further from the boundary conditions 
on S as given in eq. (12), we 

have

+= ; tonS (31)

Again using eq. (13)

4. 
(32)

n

The mechanical impedance of the shell can be defined as

+ z (33)

n v*I

,1 8



and from eqs. (30) and (32) - (33) we can define a modal impedance Z

IEquations (29) and (34) may now be used in the null field equations (10)

to relate the scattered and incident field coefficients.I
The T-matrix of a thin elastic shell

j Using eqs. (30) and (32) in (10), we have

where

k= -iZ/ oO (35)

4

Equation (34) may now be solved in the usual manner to yield

n 1 a (36)

where

f QI T a)-1
Im

TsT
g and

II
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I
Closure

At this time the formulation of the scattering problem using impedance

boundary conditions is complete. However, the exact form of the nodal

impedance must still be extracted from the shell equations for the strain

energy density. After this has been done for shells of various shapes,

numerical calculations must be performed for various model shapes, so that

they can be compared with available exact calculations (using the full

elasticity equations).

I
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